CONCENTRATION ET LOI DES GRANDS NOMBRES-COURS

On note : $E(X) = \mu$

<u>Inégalité de Bienaymé-Tchebychev</u>: Pour tout réel positif δ $P(|X - \mu| \ge \delta) \le \frac{V(X)}{\delta^2}$

$$P(|X - \mu| \ge \delta) \le \frac{V(X)}{\delta^2}$$

Inégalité de Concentration : Soit Mn, la variable aléatoire moyenne associée à un échantillon de taille n d'une variable X associé à $\{X_1; X_2; ...; X_n\}$ Pour tout réel positif δ

$$p(|M_n - \mu| \ge \delta) \le \frac{V(X)}{n\delta^2}$$

Loi des grands nombres :

$$\lim_{n\to+\infty} p(|M_n-\mu| \ge \delta) = 0$$

Méthodes (exercices):

	<u>Hachette</u>	<u>Hatier</u>	Mes exos	Sesamaths
A) Déterminer une taille d'échantillon		24-25	Ex. 2	92,93

Exercices de synthèse :

	Hachette	<u>Hatier</u>	Mes	Sesamaths
			exos	
Synthèse	12-21,34	23,48	Ex. 1, 4	86-91
Vrai/faux				
QCM			Ex. 5	
Approfondissements	47,49,50,51,52	64,65		
Prise d'initiative				
Algorithmes		21,22,30-	Ex. 3	
		38,55-58		