Bac 2025 Septembre Métropole

Sciences physiques pour les sciences de l'ingénieur.e Partie 2 : Sciences physiques

EXERCICE A – Transition énergétique

Un propriétaire réalise un logement parallélépipédique et installe vingt panneaux photovoltaïques sur le toit pour en assurer l'alimentation électrique.

Données:

- les panneaux photovoltaïques ont une surface de $S = 2,0 \text{ m}^2$ chacun et leur rendement énergétique est de 20 %: $r = \frac{P_{\text{électrique fournie}}}{P_{\text{lumineuse reçue}}}$;
- sur une année, l'énergie surfacique moyenne du rayonnement solaire au niveau du sol est E_{sol} = 1,3 MWh·m⁻²;

Figure 1. Panneaux photovoltaïques sur un toit plat

- célérité de la lumière dans le vide : $c = 3.0 \times 10^8 \,\mathrm{m\cdot s^{-1}}$;
- constante de Planck : $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}$;
- pour un photon d'énergie E et de longueur d'onde λ : $E = \frac{hc}{\lambda}$

Pour que l'effet photovoltaique se manifeste dans le matériau semi-conducteur utilisé dans ces panneaux, un photon incident doit avoir une énergie de valeur supérieure ou égale à $E_{min} = 1.8 \times 10^{-19} \text{ J}.$

- **Q1.** Calculer la longueur d'onde λ associée à cette valeur d'énergie.
- **Q2.** Situer cette longueur d'onde dans le spectre des ondes électromagnétiques par rapport à celles définissant le domaine visible.
- Q3. Déterminer si les photons associés aux ondes électromagnétiques constituant le spectre visible auront une énergie suffisante pour permettre cet effet photovoltaique.
- **Q4.** Exprimer la valeur de l'énergie lumineuse moyenne reçue par un panneau photovoltaïque en un an et montrer qu'elle vaut environ 2,6 MWh.
- Q5. Exprimer puis donner la valeur de l'énergie électrique fournie par les vingt panneaux en un an.

25-SCIPCJ1ME3 Page 14/15