MECANIQUE DES FLUIDES - COURS

Pression et force pressante :

La **pression** est égale à la valeur d'une force par unité de surface. Elle s'exprime en Pascal (Pa)

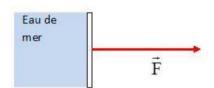
 $P = \frac{F}{S}$ Avec P: la pression (en Pa), F: une force (en N) et S: un surface en m²

Lorsqu'un liquide possède une surface libre, (en contact avec l'atmosphère) alors la pression au niveau de cette surface est égale à la pression atmosphérique. $P_{Surface\ libre} = P_{atm}$

La force pressante vérifie en outre :

- Direction : perpendiculaire à la paroi de surface S

Sens : vers la paroiNorme : F = S×P



L'hydrostatique:

On suppose dans ce modèle que le liquide est **incompressible** (masse volumique constante) et est **immobile** (pas de débit, pas de mouvement, le tout est en équilibre).

Dans ce cas, on a, pour deux points différents de ce liquide, l'égalité suivante :

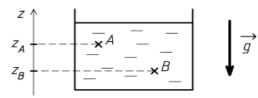
$$P_A + \rho g z_A = P_B + \rho g z_B$$

Avec P_A et P_B : la pression respectivement en A et B (en Pa)

ρ: la masse volumique du liquide (en kg.m⁻³)

g: l'accélération de la pesanteur, une constante = 9,81 m.s⁻¹

z_A et **z**_B: l'altitude respectivement en A et B (en m)



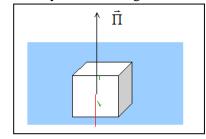
Poussée d'Archimède : La résultante des forces de pressions exercée par un fluide sur un système immergé.

$$\vec{\pi} = -V \rho \vec{g}$$

Norme : $\pi = V \rho g(V \text{ le volume immergé}, \rho \text{ masse volumique et } g = 10 \text{ m/s}^2)$

Direction : verticale Sens : vers le haut

Pt d'application : centre de gravité de la partie immergée



Ecoulement stationnaire.

Lorsque la vitesse du fluide n'évolue pas au cours du temps, on dit que l'écoulement est stationnaire (On arrive à ce régime un petit moment après avoir ouvert un robinet par exemple).

On appelle débit volumique, le volume V de fluide qui s'écoule à travers une surface S pendant un temps t. On a donc :

 $Q_V = \frac{V}{t}$ Avec D_v : le débit volumique (en m³.s⁻¹); V: le volume écoulée (en m³) et t le temps (en s)

Le débit volumique se conserve : $D_{v1} + D_{v2} = D_{v3} + D_{v4}$

Dans une canalisation, le débit volumique reste constant quelque soit la surface à travers laquelle le fluide passe. Ici $\mathbf{Q}_A = \mathbf{Q}_B$

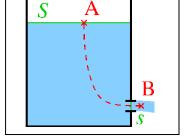
Pour avoir la vitesse moyenne du liquide, on utilise la formule suivante : $v = \frac{D_V}{S}$

Avec v : la vitesse moyenne (en m.s $^{\text{-}1})$; D_{v} : le débit volumique en (m $^3.\text{s}^{\text{-}1})$ et S : la surface (en m $^2)$

On remarque que plus S diminue, plus la vitesse moyenne augmente.

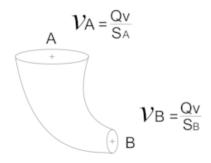
<u>Relation de Bernoulli</u>: $P_A + \rho g z_A + \frac{1}{2} \rho v_A^2 = P_B + \rho g z_B + \frac{1}{2} \rho v_B^2$ Hypothèses:

- Le fluide doit être incompressible (masse volumique constante)
- Fluide non visqueux
- Champ de pesanteur uniforme
- Régime permanent (ne dépend pas du temps)



Avec P: pression en A ou B (en Pa), ρ : masse volumique du fluide (en kg.m⁻³), v: vitesse du fluide (en m.s⁻¹), z: altitude en A ou B (en m) et $g = 9.81 \text{ m.s}^{-2}$

Effet Venturi:



Sa
$$>$$
SB donc \mathcal{V} A $<$ \mathcal{V} B

Et
$$P_A > P_B$$