METHODE CHIMIQUE D'ANALYSE - DOSAGE DIRECT - COURS

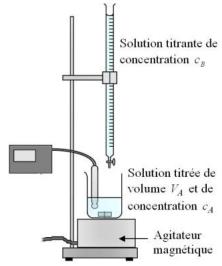
Titre massique:

 $c_m = \frac{m}{v} = M \times c$ c : concentration massique d'une molécule donnée (en g.L⁻¹) ; m : masse d'une molécule donnée (en g) ; V : volume de la solution (en L)

Densité:

$$\rho = \frac{m}{V}$$
 ρ : masse volumique (en g.L⁻¹); m: masse du corps (en g); V: volume du corps (en L)

But du dosage : Déterminer la quantité de matière d'une espèce A dans une solution inconnue.


<u>Réaction de dosage</u>: Un dosage direct fait intervenir une réaction chimique (souvent une réaction acidobasique en terminale). On a ainsi : $aA + bB \rightarrow cC + dD$

Avec a, b, c et d les coefficients stoechiométriques des espèces A, B, C et D.

A est l'espèce titrée et B est l'espèce titrante

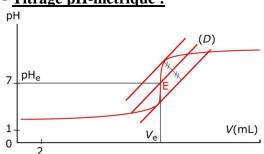
La réaction de dosage doit être : rapide, unique et totale.

Montage expérimental:

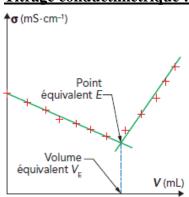
- Dans le schéma ci-contre on a ajouté une sonde qui peut représenter un pH-mètre ou un conductimètre éventuel.
- c_B est connue
- -V_A est connu mais c_A est inconnue.
- On verse au fur et à mesure la solution B dans le bécher contenant A et on relève le changement de propriété de la solution contenant A $(pH, \sigma,...)$

Equivalence : A l'équivalence, on a consommé tous les réactifs, on a donc :

 $\frac{n_A}{a} = \frac{n_B}{b}$ avec n_A : la quantité de matière initiale de A (inconnue) et n_B : la quantité de B versée pour obtenir l'équivalence c'est-à-dire la quantité de B pour un volume $V_{\text{éq}}$ versé donc $n_B = c_B \times V_{\text{éq}}$


On pourra donc par la suite en déduire n_A et selon les questions de l'énoncé m_A ou c_A car :

$$m_A = n_A \times M_A$$
 et $c_A = \frac{n_A}{V_A}$


Attention il faudra peut-être tenir compte d'éventuels facteurs de dilution.

Obtention de $V_{\acute{e}q}$: elle diffère selon le type de titrage utilisé :

- <u>Titrage pH-métrique</u>:

- Titrage conductimétrique :

La conductimétrie se calcule via la formule :

$$\sigma = \sum \lambda_{Xi} \times [X_i]$$

Avec Xi : les ions présents en solution.

 λ_{Xi} : conductivité molaire ionique (caractéristique de l'ion).

- <u>Titrage colorimétrique :</u>

On repère le volume équivalent lors du changement de couleur de la solution.

- Un indicateur coloré peut être utilisé dans le cas d'un dosage pHmétrique si le pHe est compris dans la zone de virage de l'indicateur