REACTIONS ACIDE ET BASES – COURS

<u>Acide selon Bronsted (noté AH)</u>: C'est une espèce chimique susceptible de perdre un H⁺ Molécules avec une liaison polarisée (O-H, N-H)

<u>Base selon Bronsted (noté A'):</u> C'est une espèce chimique susceptible de gagner un H⁺ Molécules avec des atomes avec des doublets non-liants

<u>Couple acide/base (AH/A⁻)</u>: Les deux espèces vérifient la demi-équation : $AH = A^- + H^+$

<u>Réaction acido-basique</u>: Un acide d'un couple $1 (A_1H/A_1)$ et une base d'un couple $2 (A_2H/A_2)$ réagissent ensemble. Un réaction acido-basique correspond à un échange de H⁺ entre une base et un acide. On écrit les demi-équations des deux couples et on les additionne membre à membre

$$A_1H = A_1^- + H^+$$

 $A_2^- + H^+ = A_2H$
 $A_1H + A_2^- = A_2H + A_1^-$

Exemples de couples acide/base :

forme acide		forme basique		demi-équation protonique	
formule	nom	formule	nom	demi-equation protomque	
$H_3O^+_{\;(aq)}$	ion oxonium	$H_2O_{(l)}$	eau	$\mathrm{H_3O}^+ = \mathrm{H_2O} + \mathrm{H}^+$	
$H_2O_{(l)}$	eau	HO ⁻ (aq)	ion hydroxyde	$\mathrm{H_2O} \ = \ \mathrm{HO^-} \ + \ \mathrm{H^+}$	
$HCl_{(g)}$	chlorure d'hydrogène	Cl ⁻ (aq)	ion chlorure	$HC1 = CI^- + H^+$	
CH ₃ COOH _(aq)	acide éthanoïque (acide acétique)	CH ₃ COO ⁻ (aq)	ion éthanoate (ion acétate)	$CH_3COOH = CH_3COO^- + H^+$	
$CO_{2(aq)},H_2O$	dioxyde de carbone en solution aqueuse	110 (73/00)	ion hydrogénocarbonate	$CO_2 + H_2O = HCO_3^- + H^+$	
$HCO_{3(aq)}^{-}$	ion hydrogénocarbonate	$\mathrm{CO}^{2-}_{3(\mathrm{aq})}$	ion carbonate (ion bicarbonate)	$HCO_3^- = CO_3^{2-} + H^+$	
$NH_{4(aq)}^{+}$	ion ammonium	NH _{3(g)}	ammoniac	$NH_4^+ = NH_3 + H^+$	

Structure de certains couples :

Acide carboxylique/ion carboxylate:

Amines/ion ammonium:

$$R \longrightarrow \stackrel{\stackrel{\bullet}{N}}{\longrightarrow} R \begin{bmatrix} H \\ | \\ R \longrightarrow N \longrightarrow R \\ | \\ R \end{bmatrix}^{+}$$

Espèces amphotères : Une espèce qui est à la fois un acide et une base. L'eau est à la fois une base et un acide. On dit que c'est un ampholyte.